Exam: Introduction to Intelligent Systems 2012-11-09

NO OPEN BOOK! GEEN OPEN BOEK! - It is not allowed to use the course book(s) or
slides or any other (printed, written or electronic) material during the exam. You may only
use a simple electronic calculator. Give sufficient explanations to demonstrate how you
come to a given solution or answer! The ‘weight’ of each problem is specified by a number
of points, e.g. (1 p). You may give answers in English, Dutch or German language.

Be precise and write down equations where appropriate. Do not answer questions with just

“Yes” or “No”, always provide reasons/arguments for your answers!

1) Hopfield Model (1 point)

2)

Consider a Hopfield neural network with N fully connected neurons of the McCulloch-
Pitts type: Si(t) € {-1,+1}, (i=1, 2, ... , N). These neurons display either maximal
activity (+1) or minimal activity (-1).

Given the synaptic weights wi ER (i=1,2, ... ,N;j=1,2, ..., N) with w;; = 0 and
activities S;(t)==1 (i=1, 2, ... , N) at discrete time t, write down the update equation
which defines the activity S;(t+1) in the next time step.

Explain (in words and math) why connections for which holds w;; > 0 can be interpreted

as excitatory synapses in this model.

Learning Vector Quantization (1.5 points)

Learning Vector Quantization was discussed in class as an example system for

classification. Assume that we deploy standard Euclidean distance for N-dimensional

feature vectors x € " which have to be assigned to three different classes.

a) Explain how the classification scheme is implemented by an LVQ system with one
given prototype per class: w9 € R" (j =1, 2, 3). What are the main differences in
comparison with the simple nearest neighbor classifier?

b) For the above system, explain LVQI, the LVQ training procedure discussed in class,
in terms of a few lines of pseudo-code. Consider a given set of examples containing
N-dimensional feature vectors x and the corresponding class labels. Be precise and
provide equations which define the distance measure, the actual update steps, etc. If
the update contains control parameters, explain their role.



3)

4

3)

Unsupervised Learning (1 point)

a) Name and briefly explain three possible aims of unsupervised learning from

high-dimensional data.

b) Name and explain one algorithm that can be used for (one of) these aims. Explain
your example algorithm in words. You do not have to specify mathematical update
equations or provide pseudo-code, but it should become clear which aim the algorithm
achieves and how it works.

Learning Vector Quantization and Overfitting (1 point)

Assume somebody claims that using more prototypes in Learning Vector Quantization

will always result in better classification.

a) Is this statement definitely right or wrong, and — if so - in what sense? Give precise
arguments which support or contradict the claim.

b) Suggest a possible strategy to determine a good choice of prototypes, given a set of
labeled example data.

¢) What kind of classifier could you obtain if the number of prototypes equals the
number of labeled examples.

Bayesian Decision Theory. Normal distributions. Maximum likelihood estimation.
(3.5 points)

Let us consider a two-category classification problem, with categories (classes) A and B
with prior probabilities P4 = 1/3 and Pg = 2/3. The class-conditional probability densities
p(x|4) and p(x|B) are one-dimensional normal distributions:

p(xl4) ~N(ws, ), p(x|B) ~ N(us, o°5)

Let us consider the sets of observations S, = {-2, -0.5, 0, 0.5, 2} for category A and Sg =
{1,2.5,3,3.5, 5} for category B.

Problems:

a) Express analytically the position(s) of the optimal Bayesian decision boundary or
boundaries as a function of P4, 4, 04, Ps, \a, Op.

b) Find the analytical conditions for having 0, 1, 2, or 3 decision boundaries. For each
possible case, draw qualitative graphs of the posterior probability functions P4 p(x|4)
and P p(x|B), which illustrate why the number of decision boundaries depends on the
parameters P4, W4, O4, Pp, 1B, Op.

¢) Compute maximum likelihood estimations of w4, 04, 1s, OB.

d) Plot sketches of the two posterior probability density functions, together with the data
sets and the estimated means and standard deviations.

e) Find the equation of the optimal decision criterion between the two classes. Find the
value(s) of the decision criterion and indicate it/them in the plot of the posterior
probability distributions and data mentioned above.



f) Classify the following points: -3, -1, 1, 2, 4, 6.
g) How can you estimate the classification error of this classifier? (If possible, write a
mathematical expression.)
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6. Hierarchical clustering (1 point).

The following upper triangular matrix

Or 102 103 |Os | Os | O | describes the dissimilarities between six
0 5 1 5 5 5 objects. Use the algorithm presented in the
: lectures to derive a dendrogram for these
o) 5 3 7 3 objects. Assume that the dissimilarity between
2 two clusters of points is defined by the
0; 5 5 3 dissimilarity of their least dissimilar elements.
O4 3 1
Os 3
Os




